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Regression 

Self-test answers 

 

• How is the t in Output 7.1 calculated? Use the values in the output to see 
if you can get the same value as R. 

It is calculated using this equation: 

 
Using the values from Output 7.1 to calculate t for the constant (t = 134.10/7.537 = 17.79), for 
the advertising budget we get 0.09612/0.009632 = 9.979.  

 

• How many units would be sold if we spent £666,000 on advertising the 
latest album by black metal band Abgott? 

A total of 198,080 CDs would be sold: 

 

 

Labcoat Leni’s real research 

Why do you like your lecturers? 

Problem 
Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965–976. 

 
In the previous chapter we encountered a study by Chamorro-Premuzic et al. in 
which they measured students’ personality characteristics and asked them to rate 
how much they wanted these same characteristics in their lecturers. In that 

chapter we correlated these scores; however, we could go a step further and 
see whether students’ personality characteristics predict the characteristics 
that they would like to see in their lecturers.  
The data from this study are in the file Chamorro-Premuzic.dat. Labcoat Leni 
wants you to carry out five multiple regression analyses: the outcome variable 

in each of the five analyses is how much students want to see neuroticism, 
extroversion, openness to experience, agreeableness and conscientiousness. For each of 
these outcomes, force Age and Gender into the analysis in the first step of the hierarchy, then 
in the second block force in the five student personality traits (Neuroticism, Extroversion, 
Openness to experience, Agreeableness and Conscientiousness). For each analysis create a 
table of the results. 
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Solution 
Lecturer neuroticism 
 
First of all, we need to load the data: 
 
PersonalityData<-read.delim("Chamorro-Premuzic.dat", header = TRUE) 
 
Then we need to create dataframes containing variables for each analysis. We need to do 
this because there are missing values in the data set and we need to exclude them so that 
they do not affect the analyses. The lines of code below will tell R to drop variables that are 
not required in each of the individual five regressions. For example, when we are looking at 
student personality as a predictor of wanting a neurotic lecturer, we only need to include the 
variable ‘neurotic lecturer’ in the regression analysis – not ‘extroverted lecturer’ or 
‘conscientious lecturer’, etc. Therefore, we can tell R to drop these scores from the analysis.  

We can run all these lines of code at once: 
 

dropVars<-names(PersonalityData) %in% c("lecturerE","lecturerO", "lecturerA", 
"lecturerC") 
neuroticLecturer<-PersonalityData[!dropVars] 
 
dropVars<-names(PersonalityData) %in% c("lecturerN","lecturerO", "lecturerA", 
"lecturerC") 
extroLecturer<-PersonalityData[!dropVars] 
 
dropVars<-names(PersonalityData) %in% c("lecturerE","lecturerN", "lecturerA", 
"lecturerC") 
openLecturer<-PersonalityData[!dropVars] 
 
dropVars<-names(PersonalityData) %in% c("lecturerE","lecturerO", "lecturerN", 
"lecturerC") 
agreeLecturer<-PersonalityData[!dropVars] 
 
dropVars<-names(PersonalityData) %in% c("lecturerE","lecturerO", "lecturerA", 
"lecturerN") 
concLecturer<-PersonalityData[!dropVars] 
 
 

We also need to tell R to delete cases with any missing values on any variable: 
 

neuroticLecturer <-neuroticLecturer[complete.cases(neuroticLecturer),] 
extroLecturer <-extroLecturer[complete.cases(extroLecturer),] 
openLecturer <-openLecturer[complete.cases(openLecturer),] 
agreeLecturer <-agreeLecturer[complete.cases(agreeLecturer),] 
concLecturer <-concLecturer[complete.cases(concLecturer),] 
 

The first of the five regressions we’ll do is whether students want lecturers to be neurotic. 
We will create two models: the first, LecturerN.1, will have age and gender as predictors. The 
second model, LecturerN.2, will have all of the five student personality traits (Neuroticism, 
Extroversion, Openness to experience, Agreeableness and Conscientiousness) as 
predictors. Remember that the data that we need to tell R to use is the neuroticLecturer data, 
not the PersonalityData. The neuroticLecturer data are a version of the PersonaliltyData but 
with all lecturer variables (except the neurotic lecturer variable) excluded from the analysis 
and missing cases within the neurotic lecturer variable excluded: 

LecturerN.1 <- lm(lecturerN ~ Age + Gender, data= neuroticLecturer) 

LecturerN.2 <- lm(lecturerN ~ Age + Gender + studentN + studentE + studentO + studentA 
+ studentC, data= neuroticLecturer) 
 
To view the output of the two regressions, we can use the summary() function: 

summary(LecturerN.1) 
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Call: 
lm(formula = lecturerN ~ Age + Gender, data = neuroticLecturer) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-12.916  -6.627  -1.791   3.652  46.260  
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -28.2199     2.5860 -10.913   <2e-16 *** 
Age              0.2784     0.1294   2.151   0.0321 *   
Gender[T.Male]   2.4188     1.0230   2.364   0.0186 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 8.774 on 370 degrees of freedom 
Multiple R-squared: 0.02785, Adjusted R-squared: 0.0226  
F-statistic:   5.3 on 2 and 370 DF, p-value: 0.005377  
 
summary(LecturerN.2) 
 
Call: 
lm(formula = lecturerN ~ Age + Gender + studentN + studentE +  
    studentO + studentA + studentC, data = PersonalityData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-12.433  -5.914  -1.791   3.885  46.525  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -16.77420    5.29631  -3.167  0.00167 ** 
Age           0.30132    0.12808   2.353  0.01917 *  
Gender        1.90321    1.08484   1.754  0.08021 .  
studentN     -0.06017    0.05885  -1.022  0.30723    
studentE     -0.10750    0.07528  -1.428  0.15414    
studentO     -0.17424    0.07286  -2.391  0.01730 *  
studentA      0.08721    0.07158   1.218  0.22391    
studentC     -0.20262    0.08162  -2.482  0.01350 *  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 8.669 on 365 degrees of freedom 
  (57 observations deleted due to missingness) 
Multiple R-squared: 0.06384, Adjusted R-squared: 0.04588  
F-statistic: 3.556 on 7 and 365 DF, p-value: 0.001033  
 

We can calculate the change in R2 from the first model (LecturerN.1) to the second model 
(LecturerN.2) by subtracting R2 in model 1 from R2 in model 2: 

0.06384 – 0.02785 = 0.04 
We can use the anova() command to compare the two models and obtain the significance 

for the change in R2 : 

anova(LecturerN.1, LecturerN.2) 
 
 
Analysis of Variance Table 
 
Model 1: lecturerN ~ Age + Gender 
Model 2: lecturerN ~ Age + Gender + studentN + studentE + studentO + studentA + 
studentC 
  Res.Df   RSS Df   Sum of Sq   F    Pr(>F)   
1    370  28483                              
2    365  27429  5    1054.3   2.806 0.01677 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
The significant F-statistic informs us that the change in R2 is significant, i.e. model 2 is a 
better fit to the data than model 1. 

To obtain the standardized beta estimates (sometimes called beta, βi) we need to use a 
function called lm.beta(). This is found in the QuantPsyc package, and so you need to install 
(if you haven’t already) and load this package: 
 
install.packages("QuantPsyc") 
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Library(QuantPsyc) 
 
Then we can run it to obtain the standardized beta estimates: 

lm.beta(LecturerN.1) 
Warning in var(as.vector(x), na.rm = na.rm) : 
  NAs introduced by coercion 
       Age           Gender[T.Male]  
     0.1103429             NA  

lm.beta(LecturerN.2) 
Warning in var(as.vector(x), na.rm = na.rm) : 
  NAs introduced by coercion 
    Age       Gender[T.Male]   studentN       studentE       studentO       studentA  
 0.11942944        NA         -0.05933126    -0.07829448    -0.12270633     0.07276446  
   
 studentC  
-0.15651844 
 
We can also obtain some statistics, such as the VIF by using the vif() function and Durbin 
Watson’s test using the dwt() function: 

 vif(LecturerN.2) 
     Age   Gender studentN studentE studentO studentA studentC  
1.004731 1.153441 1.312781 1.171989 1.026678 1.390897 1.549902 
 

dwt(LecturerN.2) 
 lag Autocorrelation   D-W Statistic p-value 
   1      0.01733968      1.963358    0.68 
 Alternative hypothesis: rho != 0 
 
 
We can obtain the confidence intervals by using the confint() command: 

confint(LecturerN.2) 
                   2.5 %      97.5 % 
(Intercept) -27.18931719 -6.35908268 
Age           0.04945960  0.55318990 
Gender       -0.23011258  4.03652339 
studentN     -0.17588793  0.05555007 
studentE     -0.25553236  0.04053303 
studentO     -0.31752453 -0.03094877 
studentA     -0.05355921  0.22797221 
studentC     -0.36313181 -0.04211567 
 
One useful plot that you should always obtain is the histogram of the residuals (or the 
standardized or studentized residuals): 
 
hist(rstudent(Lecturer.2)) 
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You could report these results as follows: 
  B SE B β 

Step 1    
 Constant −28.22 2.59  
 Age 0.28 0.13 0.11* 
 Gender 2.42 1.02 0.12* 

Step 2    
 Constant −16.77 5.30  
 Age 0.30 0.13 0.12* 
 Gender 1.90 1.08 0.10 
 Neuroticism −0.06 0.06 −0.06 
 Extroversion −0.11 0.08 −0.08 
 Openness −0.17 0.07 −0.12* 
 Agreeableness 0.09 0.07 0.07 
 Conscientiousness −0.20 0.08 −0.16* 
Note: R2 = .03 for step 1: ∆R2 = .04 for step 2 (p < .05). * p < .05. 
So basically, age, openness and conscientiousness were significant predictors of wanting a 
neurotic lecturer (note that for openness and conscientiousness the relationship is negative, 
i.e. the more a student scored on these characteristics, the less they wanted a neurotic 
lecturer). 
 

Lecturer extroversion 
The second variable we want to predict is lecturer extroversion. I will run through the code to 
run the main regression analysis and report the results, but I will not include the output this 
time. 

First we need to create two models, I have called them LecturerE.1 and LecturerE.2. 
Remember that the data that we need to tell R to use is the extroLecturer data, not the 
PersonalityData. The extroLecturer data are a version of the PersonaliltyData but with all 
lecturer variables (except the extroverted lecturer variable) excluded from the analysis and 
missing cases within the extroverted lecturer variable excluded: 

LecturerE.1 <- lm(lecturerE ~ Age + Gender, data= extroLecturer) 

LecturerE.2 <- lm(lecturerE ~ Age + Gender + studentN + studentE + studentO + studentA 
+ studentC, data= extroLecturer) 

 
Obtain your output: 

summary(LecturerE.1) 

summary(LecturerE.2) 

Histogram of rstudent(Personality.2)

rstudent(Personality.2)
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Run an ANOVA to compare the two models: 

anova(LecturerE.1, LecturerE.2) 

 
Standardized beta estimates: 

lm.beta(LecturerE.1) 

lm.beta(LecturerE.2) 
 
You could report these results as follows: 
  B SE B β 

Step 1    
 Constant 11.82 2.28  
 Age 0.04 0.11 0.02 
 Gender 1.12 0.94 0.07 
Step 2    
 Constant 2.03 4.77  
 Age 0.01 0.11 0.00 
 Gender 1.58 1.01 0.10 
 Neuroticism 0.02 0.06 0.02 
 Extroversion 0.16 0.07 0.16* 
 Openness 0.05 0.07 0.04 
 Agreeableness 0.01 0.06 0.01 
 Conscientiousness 0.11 0.08 0.11 
Note. R2 = .01 for step 1: ∆R2 = .04 for step 2 (p > .05). * p < .05. 
 
So basically, student extroversion was the only significant predictor of wanting an extrovert 
lecturer; the model overall did not explain a significant amount of the variance in wanting an 
extroverted lecturer. 

 
Lecturer openness to experience 
The third variable we want to predict is lecturer openness to experience. As before, I will run 
through the code to run the main regression analysis and report the results, but I will not 
include the output. 

 
First we need to create two models, I have called them LecturerO.1 and LecturerO.2. 

Remember that the data that we need to tell R to use are the openLecturer data, not the 
PersonalityData. The openLecturer data are a version of the PersonaliltyData but with all 
lecturer variables (except the openness to experience lecturer variable) excluded from the 
analysis and missing cases within the openness to experience lecturer variable excluded: 

LecturerO.1 <- lm(lecturerO ~ Age + Gender, data= openLecturer) 

LecturerO.2 <- lm(lecturerO ~ Age + Gender + studentN + studentE + studentO + studentA 
+ studentC, data= openLecturer) 

 
Obtain your output: 

summary(LecturerO.1) 

summary(LecturerO.2) 

 
Run an ANOVA to compare the two models: 

anova(LecturerO.1, LecturerO.2) 

 
Standardized beta estimates: 

lm.beta(LecturerO.1) 
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lm.beta(LecturerO.2) 
 
You could report these results as: 
  B SE B β 

Step 1    
 Constant 9.35 2.37  
 Age −0.03 0.12 −0.01 
 Gender 0.11 0.94 0.01 
Step 2    
 Constant −5.51 4.83  
 Age −0.04 0.12 −0.02 
 Gender −0.22 0.99 −0.01 
 Neuroticism 0.01 0.05 0.01 
 Extroversion 0.07 0.07 0.05 
 Openness 0.28 0.07 0.22*** 
 Agreeableness 0.15   0.07 0.13* 
 Conscientiousness −0.06 0.07 −0.05 
Note: R2 = .00 for step 1 (ns): ∆R2 = .06 for step 2 (p < .001). * p < .05, *** p < .001. 
 
So basically, student openness to experience was the most significant predictor of wanting a 
lecturer who is open to experiences, but student agreeableness predicted this also. 
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Lecturer agreeableness 
The fourth variable we want to predict is lecturer agreeableness. As before, I will run through 
the code to run the main regression analysis and report the results, but I will not include the 
output. 

First we need to create two models, I have called them LecturerA.1 and LecturerA.2. 
Remember that the data that we need to tell R to use are the agreeLecturer data, not the 
PersonalityData. The oagreeLecturer data are a version of the PersonaliltyData but with all 
lecturer variables (except the agreeableness lecturer variable) excluded from the analysis and 
missing cases within the agreeableness lecturer variable excluded: 

LecturerA.1 <- lm(lecturerA ~ Age + Gender, data= agreeLecturer) 

LecturerA.2 <- lm(lecturerA ~ Age + Gender + studentN + studentE + studentO + studentA 
+ studentC, data= agreeLecturer) 

 
Obtain your output: 

summary(LecturerA.1) 

summary(LecturerA.2) 

 
Run an ANOVA to compare the two models: 

anova(LecturerA.1, LecturerA.2) 

 
Standardized beta estimates: 

lm.beta(LecturerA.1) 

lm.beta(LecturerA.2) 
 
You could report these results as follows: 
  B SE B β 

Step 1    
 Constant 18.19 2.79  
 Age −0.47 0.14 −0.17*** 
 Gender −0.76 1.09 −0.04 
Step 2    
 Constant 7.04 5.61  
 Age −0.48 0.14 −0.17*** 
 Gender 1.00 1.15 0.05 
 Neuroticism 0.17 0.06 0.16** 
 Extroversion 0.06 0.08 0.04 
 Openness −0.21 0.08 −0.14** 
 Agreeableness 0.17 0.08 0.13* 
 Conscientiousness 0.10 0.09 0.07 
Note: R2 = .03 for step 1 (p < .01): ∆R2 = .97 for step 2 (p < .001). * p < .05, ** p < .01, *** p < 
.001 
 
Age, student openness to experience, student neuroticism and student agreeableness 
significantly predicted wanting a lecturer who is agreeable. Age and openness to experience 
had negative relationships (the older and more open to experienced you are, the less you 
want an agreeable lecturer), whereas as student neuroticism increases so does the desire for 
an agreeable lecturer (not surprisingly, because neurotics will lack confidence and probably 
feel more able to ask an agreeable lecturer questions). 
 

Lecturer conscientiousness 
The final variable we want to predict is lecturer conscientiousness. As before, I will run 
through the code to run the main regression analysis and report the results, but I will not 
include the output. 
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First we need to create two models, I have called them LecturerC.1 and LecturerC.2. 
Remember that the data that we need to tell R to use are the concLecturer data, not the 
PersonalityData. The concLecturer data are a version of the PersonaliltyData but with all 
lecturer variables (except the lecturer conscientiousness variable) excluded from the analysis 
and missing cases within the lecturer conscientiousness variable excluded: 

LecturerC.1 <- lm(lecturerC ~ Age + Gender, data= concLecturer) 

LecturerC.2 <- lm(lecturerC ~ Age + Gender + studentN + studentE + studentO + studentA 
+ studentC, data= concLecturer) 

 
Obtain your output: 

summary(LecturerC.1) 

summary(LecturerC.2) 

 
Run an ANOVA to compare the two models: 

anova(LecturerC.1, LecturerC.2) 

 
Standardized beta estimates: 

lm.beta(LecturerC.1) 

lm.beta(LecturerC.2) 
 
  
You could report these results as follows: 
  B SE B β 

Step 1    
 Constant 14.97 2.18  
 Age 0.12 0.11 0.06 
 Gender −2.28 0.87 −0.14** 
Step 2    
 Constant 6.36 4.43  
 Age 0.10 0.11 0.05 
 Gender −1.56 0.91 −0.09 
 Neuroticism −0.01 0.05 −0.01 
 Extroversion −0.07 0.06 −0.06 
 Openness −0.01 0.06 −0.01 
 Agreeableness 0.15 0.06 0.14* 
 Conscientiousness 0.14 0.07 0.13* 
Note: R2 = .02 for step 1 (p < .05): ∆R2 = .05 for step 2 (p < .01). * p < .05, ** p < .01. 
 
Student agreeableness and conscientiousness both predicted wanting a lecturer who is 
conscientious. Note also that gender predicted this in the first step, but its b became non-
significant when the student personality variables were forced in as well. However, gender is 
probably a variable that should be explored further within this context. 

Compare your results to Table 4 in the actual article. I’ve highlighted the area of the table 
relating to our analyses (our five analyses are represented by the columns labelled N, E, O, A 
and C). 
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Smart Alex’s solutions 

Task 1 

• Run a simple regression for the pubs.dat data in Jane Superbrain Box 7.1, predicting 
mortality from number of pubs. Try repeating the analysis but bootstrapping the 
regression parameters. 

 
First load the data file by setting your working directory to the location of the file (see section 
3.4.4) and executing: 
 
pubs<-read.delim("pubs.dat", header = TRUE) 
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Then, by executing 

pubs 

we can view the data set: 
 

       pubs  mortality 
1       10   1000 
2       20   2000 
3       30   3000 
4       40   4000 
5       50   5000 
6       60   6000 
7       70   7000 
8       500  10000 
 
We run a regression analysis using the lm() function: 

pubs.1 <- lm(mortality ~ pubs, data = pubs) 

We have created an object called pubs.1 that contains the results of our analysis. We can 
show the object by executing: 

summary(pubs.1) 

This displays the information in the output below: 
 

Call: 
lm(formula = mortality ~ pubs, data = pubs) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2495.3  -996.3  -223.5  1145.2  2644.3  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 3351.955    781.236   4.291  0.00515 ** 
pubs          14.339      4.301   3.334  0.01572 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1864 on 6 degrees of freedom 
Multiple R-squared: 0.6495, Adjusted R-squared: 0.591  
F-statistic: 11.12 on 1 and 6 DF, p-value: 0.01572  

 
For these data, F is 11.12, which is significant at p < .05 (because the p-value given is less 
than .05). Therefore, we can conclude that the number of pubs significantly predicts mortality. 
 

Next we want to repeat the analysis but bootstrapping the regression parameters. To do 
this, first make sure you have executed the bootReg() function from the book chapter. We can 
then use the function to obtain the bootstrap samples: 

 
bootResults<-boot(statistic = bootReg, formula = mortality ~ pubs, data = pubs, R = 

2000) 
 

Executing this command creates an object called bootResults that contains the bootstrap 
samples. We use the boot() function to get these. Instead of one statistic, we need to obtain 
bootstrap confidence intervals for the intercept, and the slope for pubs. We can do this with 
the boot.ci() function that we encountered in Chapter 6. However, R doesn't know the names 
of the statistics in bootResults, so we instead have to use their location in the bootResults 
object (because R does know this information). The intercept is the first thing in bootResults, 
so to obtain the bootstrapped confidence interval for the intercept we use index = 1:  

boot.ci(bootResults, type = "bca", index = 1)  

The location of the coefficient for pubs is given by index = 2, so we can get the bootstrap 
confidence intervals for this predictor by executing: 

 
boot.ci(bootResults, type = "bca", index = 2) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
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Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = bootResults, type = "bca", index = 1) 
 
Intervals :  
Level       BCa           
95%   (0, 6238)   
Calculations and Intervals on Original Scale 
 
> boot.ci(bootResults, type = "bca", index = 2) 
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 2000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = bootResults, type = "bca", index = 2) 
 
Intervals :  
Level       BCa           
95%   (7.53, 100.00)   
 
The output above shows the confidence limitss for the intercept are 0, 6238 (remember that 
because of how bootstrapping works, you won’t get exactly the same result as me, but it 
should be very close). The bootstrap confidence limits for the predictor pubs are 7.53, 
100.00. These values do not cross zero, indicating that number of pubs still has a significant 
effect on mortality when using a robust method. 
 

Task 2  

• A fashion student was interested in factors that predicted the salaries of catwalk 
models. She collected data from 231 models. For each model she asked them their 
salary per day on days when they were working (salary), their age (age), how many 
years they had worked as a model (years), and then got a panel of experts from 
modelling agencies to rate the attractiveness of each model as a percentage, with 
100% being perfectly attractive (beauty). The data are in the file Supermodel.dat. 
Unfortunately, this fashion student bought some substandard statistics text and so 
doesn’t know how to analyse her data. Can you help her out by conducting a 
multiple regression to see which factors predict a model’s salary? How valid is the 
regression model? 

 
 
First, load in the Supermodel.dat data: 
 
Supermodel<-read.delim("Supermodel.dat", header = TRUE) 
 
Then create a regression model (I have called the model Supermodel.1) to predict salary from 
age, number of years being a supermodel and beauty: 

 
Supermodel.1 <- lm(salary~age + beauty + years, data= Supermodel) 
 
Obtain the output of the regression model: 
 
summary(Supermodel.1) 
 
Call: 
lm(formula = salary ~ age + beauty + years, data = Supermodel) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-24.853  -7.950  -4.197   4.605  68.085  
 
Coefficients: 
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            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -60.8897    16.4966  -3.691 0.000280 *** 
age           6.2344     1.4112   4.418 1.54e-05 *** 
beauty       -0.1964     0.1524  -1.289 0.198711     
years        -5.5612     2.1222  -2.621 0.009372 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 14.57 on 227 degrees of freedom 
Multiple R-squared: 0.184, Adjusted R-squared: 0.1733  
F-statistic: 17.07 on 3 and 227 DF, p-value: 4.973e-10  
 
To begin with, a sample size of 231 with three predictors seems reasonable because this 
would easily detect medium to large effects (see the diagram in the chapter). 

Overall, the model accounts for 18.4% of the variance in salaries and is a significant fit to the 
data (F(3, 227) = 17.07, p < .001). The adjusted R2 (.17) shows some shrinkage from the 
unadjusted value (.184), indicating that the model may not generalize well. We can also use 
Stein’s formula: 

 
This also shows that the model may not cross-generalize well. 

Next we can obtain the standardized beta estimates: 
 
lm.beta(Supermodel.1) 

 
     age      beauty       years  
 0.94214234 -0.08299604 -0.54779846  

 

In terms of the individual predictors we could report the following: 
•   B SE B β 

    
•  Constant –60.89 16.50  
•  Age 6.23 1.41 0.94** 
•  Years as a model –5.56 2.12 –0.55* 
•  Attractiveness –0.20 0.15 –0.08 

Note: R2  = .18 (p < .001). * p < .01, ** p < .001. 
 
It seems as though salaries are significantly predicted by the age of the model. This is a 

positive relationship (look at the sign of the beta), indicating that as age increases, salaries 
increase too. The number of years spent as a model also seems to significantly predict 
salaries, but this is a negative relationship indicating that the more years you’ve spent as a 
model, the lower your salary. This finding seems very counter-intuitive, but we’ll come back to 
it later. Finally, the attractiveness of the model doesn’t seem to predict salaries. 

If we wanted to write the regression model, we could write it as: 

 
The next part of the question asks whether this model is valid. 
 
dwt(Supermodel.1) 

lag Autocorrelation D-W Statistic p-value 
   1     -0.03061432      2.057416   0.724 
 Alternative hypothesis: rho != 0 
 
vif(Supermodel.1) 
age          beauty     years  
12.652841  1.153364   12.156757 
 
1/vif(Supermodel.1) 
  age        beauty      years  
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0.07903364 0.86702902 0.08225878  
 
We can obtain the casewise diagnostics. However, if we just obtain them, R will print a long 
list for us.  This won’t be very useful. Instead, we’ll store them, and that way we can look at 
them more easily.  To make our life a little easier, we’ll add them to the Supermodel.1 data 
set: 
 
Supermodel$cooks.distance<-cooks.distance(Supermodel.1) 
Supermodel$residuals<-resid(Supermodel.1) 
Supermodel$standardized.residuals <- rstandard(Supermodel.1) 
Supermodel$studentized.residuals <- rstudent(Supermodel.1) 
Supermodel$dfbeta <- dfbeta(Supermodel.1) 
Supermodel$dffit <- dffits(Supermodel.1) 
Supermodel$leverage <- hatvalues(Supermodel.1) 
Supermodel$covariance.ratios <- covratio(Supermodel.1) 

 
List of standardized residuals greater than 2: 
Supermodel$standardized.residuals>2| Supermodel$standardized.residuals < -2 
 
Create a variable called large.residual, which is TRUE (or 1) if the residual is greater than 2 or 
less than –2: 
Supermodel$large.residual <- Supermodel$standardized.residuals > 2| 
Supermodel$standardized.residuals < -2 
 
Now we have a variable that we can use. To use it, it is useful to remember that R stores 
‘TRUE’ as 1, and ‘FALSE’ as 0. Because of that, we can get the sum of the variable 
large.residual, and this will be the number of cases with a large residual: 
sum(Supermodel$large.residual) 
[1] 12 
 

It might be better not just to know how many cases there are, but also which cases they are. 
We can look at the values of the residuals by selecting only those cases where the residual is 
outside of the range from –2 to +2. And we can see the values of some of the variables, using 
the same approach. We only want to show certain cases – those in which large.residual is 
equal to TRUE. So we use: 

 
Supermodel[,c("salary", "age", "beauty", "years", "standardized.residuals")] 
 
     salary    age     beauty  years           standardized.residuals 
2   53.72479 20.34707 68.56999 5.506886               2.214829 
5   95.33807 24.17183 71.77039 8.532050               4.696607 
24  48.86766 19.11451 73.32626 4.951027               2.241876 
41  51.02516 19.46200 80.00141 5.187275               2.420635 
91  56.83151 24.41146 80.65103 8.753041               2.099147 
116 64.79129 18.46839 78.91763 4.284322               3.440027 
127 61.31880 22.25275 78.92917 7.397138               2.778123 
135 89.98003 22.28899 75.93018 7.419825               4.717284 
155 74.86075 24.40682 86.09212 8.444767               3.319137 
170 54.56552 22.31422 88.01470 6.833367               2.200115 
191 50.65578 15.27406 66.38544 2.981697               3.177863 
198 71.32073 20.65061 77.57684 5.834559               3.531357 
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We can get some other plots by using plot(): 
 
plot(Supermodel.1) 
 

A useful plot is a normal Q-Q plot: 

 
 

Histogram of rstandard(Supermodel.1)
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Residuals: There are six cases that have a standardized residual greater than 3, and two of 
these are fairly substantial (case 5 and 135). We have 5.19% of cases with standardized 
residuals above 2, so that’s as we expect, but 3% of cases with residuals above 2.5 (we’d 
expect only 1%), which indicates possible outliers.  
Normality of errors: The histogram reveals a skewed distribution, indicating that the normality 
of errors assumption has been broken. The normal Q–Q plot verifies this because there is a 
large amount of deviation from the straight line. 
Homoscedasticity and independence of errors: The scatterplot of the standardized residuals 
does not show a random pattern. There is a distinct funnelling, indicating heteroscedasticity. 
However, the Durbin–Watson statistic does fall within Field’s recommended boundaries of 1–
3, which suggests that errors are reasonably independent.  
Multicollinearity: For the age and experience variables in the model, VIF values are above 10 
(or alternatively, tolerance values are all well below 0.1), indicating multicollinearity in the 
data. It is possible that these two variables are highly correlated and therefore are measuring 
very similar things. Of course, this makes perfect sense because the older a model is, the 
more years she would’ve spent modelling! So, it was fairly stupid to measure both of these 
things! This also explains the weird result that the number of years spent modelling negatively 
predicted salary (i.e. more experience = less salary!): in fact if you do a simple regression with 
experience as the only predictor of salary you’ll find it has the expected positive relationship. 
This hopefully demonstrates why multicollinearity can bias the regression model. 

All in all, several assumptions have not been met and so this model is probably fairly 
unreliable. 
 

Task 3 

• Using the Glastonbury data from this chapter (with the dummy coding in 
GlastonburyDummy.dat), which you should’ve already analysed, comment on 
whether you think the model is reliable and generalizable. 
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This question asks whether this model is valid. The model would be: 
 
gfr.1 <- lm(gfr$change ~ gfr$crusty + gfr$metaller + gfr$indie.kid, data=gfr) 

 
However, the problem is that when you create the gfr.1 model, people with missing data are 
excluded. Only 123 cases go into the model (due to a large amount of missing data). This is 
only really a problem when trying to get the residuals; the residuals is a vector that's 123 
items long, and when you try to make that into a variable, it doesn't match. 
 
To view the output: 

 
summary(gfr.1) 
 
Call: 
lm(formula = gfr$change ~ gfr$crusty + gfr$metaller + gfr$indie.kid,  
    data = gfr) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.82569 -0.50489  0.05593  0.42430  1.59431  
 
Coefficients: 
                  Estimate Std. Error t value Pr(>|t|)     
(Intercept)       -0.55431    0.09036  -6.134 1.15e-08 *** 
gfr$crustyTRUE    -0.41152    0.16703  -2.464   0.0152 *   
gfr$metallerTRUE   0.02838    0.16033   0.177   0.8598     
gfr$indie.kidTRUE -0.40998    0.20492  -2.001   0.0477 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.6882 on 119 degrees of freedom 
  (687 observations deleted due to missingness) 
Multiple R-squared: 0.07617, Adjusted R-squared: 0.05288  
F-statistic:  3.27 on 3 and 119 DF, p-value: 0.02369  
 
vif(gfr.1) 
 
gfr$crusty  gfr$metaller gfr$indie.kid  
     1.137931      1.143818      1.100084 

 
1/vif(gfr.1) 

 
gfr$crusty  gfr$metaller gfr$indie.kid  
    0.8787879     0.8742647     0.9090214  
 
To calculate the Durbin–Watson statistic type:  
 
dwt(gfr.1)  
 
lag Autocorrelation D-W Statistic p-value 
   1      0.04948997      1.893407   0.558 
 Alternative hypothesis: rho != 0 

 

hist(rstandard(gfr.1)) 



DISCOVERING STATISTICS USING SPSS 

PROFESSOR ANDY P FIELD  18 

 
plot(gfr.1) 

 
 
plot(gfr.1$fitted.values,rstandard(gfr.1)) 

 

Histogram of rstandard(gfr.1)
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I will include the code for obtaining the residuals, but I will not put in the output as it is rather 
large. 

Obtain casewise diagnostics and add them to the original data: 
 

gfr$cooks.distance<-cooks.distance(gfr.1) 
gfr$residuals<-resid(gfr.1) 
gfr$standardized.residuals<-rstandard(gfr.1) 
gfr$studentized.residuals<-rstudent(gfr.1) 
gfr$dfbeta<-dfbeta(gfr.1) 
gfr$dffit<-dffits(gfr.1) 
gfr$leverage<-hatvalues(gfr.1) 
gfr$covariance.ratios<-covratio(gfr.1) 
 
List of standardized residuals greater than 2: 
gfr$standardized.residuals>2| gfr$standardized.residuals < -2 
 
Create a variable called large.residual, which is TRUE (or 1) if the residual is greater than 2 or 
less than –2: 
gfr$large.residual <- gfr$standardized.residuals > 2| gfr$standardized.residuals < -2 
 
Count the number of large residuals: 
sum(gfr$large.residual) 
 
Residuals: There are no cases that have a standardized residual greater than 3. We have 
4.07% of cases with standardized residuals above 2, and 0.81% of cases with residuals 
above 2.5 (and we’d expect 1%), so the data are consistent with what we’d expect.  
Normality of errors: The histogram looks reasonably normally distributed. indicating that the 
normality of errors assumption has probably been met. The normal Q-Q plot verifies this 
because the dashed line doesn’t deviate much from the plots (which indicates what you’d get 
from normally distributed errors). 
Homoscedasticity and independence of errors: The scatterplot of ZPRED vs. ZRESID does 
look a bit odd with categorical predictors, but essentially we’re looking for the height of the 
lines to be about the same (indicating the variability at each of the three levels is the same). 
This is true, indicating homoscedasticity. The Durbin–Watson statistic also falls within Field’s 
recommended boundaries of 1–3, which suggests that errors are reasonably independent.  
Multicollinearity: For all variables in the model, VIF values are below 10 (or alternatively, 
tolerance values are all well above 0.1) indicating no multicollinearity in the data.  

All in all, the model looks fairly reliable (but you should check for influential cases!). 
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Task 4 

• A study was carried out to explore the relationship between aggression and several 
potential predicting factors in 666 children who had an older sibling. Variables 
measured were Parenting_Style (high score = bad parenting practices), 
Computer_Games (high score = more time spent playing computer games), 
Television (high score = more time spent watching television), Diet (high score = the 
child has a good diet low in additives), and Sibling_Aggression (high score = more 
aggression seen in their older sibling). Past research indicated that parenting style 
and sibling aggression were good predictors of the level of aggression in the younger 
child. All other variables were treated in an exploratory fashion. The data are in the 
file Child Aggression.dat. Analyse them with multiple regression.   

 
We need to conduct this analysis hierarchically, entering parenting style and sibling 
aggression in the first step (forced entry) and the remaining variables in a second step. 

First load the ChildAggression.dat file: 
 
 ChildAggression<-read.delim("ChildAggression.dat", header = TRUE) 
 

Create two regression models: 
 

ChildAggression.1<-lm(Aggression ~ Sibling_Aggression + Parenting_Style, data = 
ChildAggression) 

 
 

ChildAggression.2<-lm(Aggression ~ Sibling_Aggression+Parenting_Style+ Diet + 
Computer_Games + Television, data=ChildAggression) 
 
Then view the output of the two models: 
 
summary(ChildAggression.1) 
 
Call: 
lm(formula = Aggression ~ Sibling_Aggression + Parenting_Style,  
    data = ChildAggression) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.09755 -0.17180  0.00092  0.15405  1.23037  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        -0.005784   0.012065  -0.479    0.632     
Sibling_Aggression  0.093409   0.037505   2.491    0.013 *   
Parenting_Style     0.061984   0.012257   5.057 5.51e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3113 on 663 degrees of freedom 
Multiple R-squared: 0.05325, Adjusted R-squared: 0.05039  
F-statistic: 18.64 on 2 and 663 DF,  p-value: 1.325e-08 
 
 
summary(ChildAggression.2) 

 
Call: 
lm(formula = Aggression ~ Sibling_Aggression + Parenting_Style +  
    Diet + Computer_Games + Television, data = ChildAggression) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.12629 -0.15253 -0.00421  0.15222  1.17669  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        -0.004988   0.011983  -0.416 0.677350     
Sibling_Aggression  0.081684   0.038780   2.106 0.035550 *   
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Parenting_Style     0.056648   0.014557   3.891 0.000110 *** 
Diet               -0.109054   0.038076  -2.864 0.004315 **  
Computer_Games      0.142161   0.036920   3.851 0.000129 *** 
Television          0.032916   0.046057   0.715 0.475059     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.3071 on 660 degrees of freedom 
Multiple R-squared: 0.08258, Adjusted R-squared: 0.07563  
F-statistic: 11.88 on 5 and 660 DF,  p-value: 5.025e-11  

 
Obtain the standardized parameter estimates with the lm.beta() function: 

 
lm.beta(ChildAggression.1) 
 
Sibling_Aggression    Parenting_Style  
        0.09557412         0.19406149 

 
lm.beta(ChildAggression.2) 
 
Sibling_Aggression    Parenting_Style      Diet         Computer_Games  
   0.08357717            0.17735588      -0.11503080     0.15211518  
         
Television  
0.03192490 
 
Compare the values of R2 in two models using the ANOVA command: 
 
anova(ChildAggression.1, ChildAggression.2) 

 
Analysis of Variance Table 
 
Model 1: Aggression ~ Sibling_Aggression + Parenting_Style 
Model 2: Aggression ~ Sibling_Aggression + Parenting_Style + Diet + Computer_Games +  
    Television 
  Res.Df   RSS Df Sum of Sq      F    Pr(>F)     
1    663 64.23                                   
2    660 62.24  3    1.9900 7.0339 0.0001166 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Statistics: 

 
vif(ChildAggression.1) 

 
Sibling_Aggression    Parenting_Style  
          1.031210           1.031210 
 
1/vif(ChildAggression.1) 

 
Sibling_Aggression    Parenting_Style  
         0.9697344          0.9697344  
 
vif(ChildAggression.2) 

 
Sibling_Aggression    Parenting_Style               Diet     Computer_Games  
          1.132618           1.494296           1.160466           1.122719  
        
 Television  
 1.435525  

 
1/vif(ChildAggression.2) 

 
Sibling_Aggression    Parenting_Style               Diet     Computer_Games  
         0.8829104          0.6692115          0.8617231          0.8906946  
        Television  
         0.6966095 

 
 
durbinWatsonTest(ChildAggression.1) 
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lag Autocorrelation D-W Statistic p-value 
   1      0.05300815      1.890118   0.168 
 Alternative hypothesis: rho != 0 

 
dwt(ChildAggression.2) 

 
lag Autocorrelation D-W Statistic p-value 
   1      0.04218005      1.912808    0.24 
 Alternative hypothesis: rho != 0 

 
Obtain casewise diagnostics and add them to the original data: 

 
ChildAggression$cooks.distance<-cooks.distance(ChildAggression.2) 
ChildAggression$residuals<-resid(ChildAggression.2) 
ChildAggression$standardized.residuals <- rstandard(ChildAggression.2) 
ChildAggression$studentized.residuals <- rstudent(ChildAggression.2) 
ChildAggression$dfbeta <- dfbeta(ChildAggression.2) 
ChildAggression$dffit <- dffits(ChildAggression.2) 
ChildAggression$leverage <- hatvalues(ChildAggression.2) 
ChildAggression$covariance.ratios <- covratio(ChildAggression.2) 
 
Get a list of standardized residuals greater than 2: 

 
ChildAggression$standardized.residuals>2| ChildAggression$standardized.residuals < -2 

 
I won’t put the output of this list in here as it is a long list! 

Create a variable called large.residual, which is TRUE (or 1) if the residual is greater than 2 
or less than –2: 

 
ChildAggression$large.residual <- ChildAggression$standardized.residuals > 2| 
ChildAggression$standardized.residuals < -2 
 
Count the number of large residuals: 
sum(ChildAggression$large.residual) 
 
[1] 37 
 
If we want to display only some of the variables we can use: 
ChildAggression[,c("Aggression", 
"Sibling_Aggression","Parenting_Style","Diet","Computer_Games", "Television", 
"standardized.residuals")] 
 
Display the value of Aggression, Parenting_Style, Diet, Computer_Games and Television 
and the standardized residual, for those cases which have a residual greater than 2 or less 
than –2: 
 
ChildAggression[ChildAggression$large.residual,c("Aggression", 
"Sibling_Aggression","Parenting_Style","Diet","Computer_Games", "Television", 
"standardized.residuals")] 
 
standardized.residuals 
2                 2.289855 
45               -3.081966 
47                2.484122 
71               -2.483667 
75                2.152417 
150               2.006389 
157               3.849871 
163              -2.108737 
169               3.206542 
182               2.083747 
199               2.558020 
200               3.074039 
204               2.090290 
217              -2.712824 
221               3.231368 
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266               2.028527 
270              -2.996664 
316               2.021033 
351               2.396689 
374               2.939848 
375               2.322632 
379              -2.766500 
386               2.426592 
407              -2.163684 
411              -2.179070 
421              -2.146689 
431              -2.492695 
439              -3.134520 
440              -3.286946 
463              -3.707637 
482               3.477799 
505              -3.220184 
539               3.515591 
589               2.020330 
630              -2.114454 
635              -2.662962 
639              -2.706759 

 
Histogram: 

hist(rstandard(ChildAggression.2)) 

 

 
 

 

 

 

 

 

 

 

 

plot(ChildAggression.2$fitted.values,rstandard(ChildAggression.2)) 

Histogram of rstandard(ChildAggression.2)
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Based on the final model (which is actually all we’re interested in) the following variables 
predict aggression: 

 
 Parenting style (b = 0.06, β = 0.18, t = 3.89, p < .001) significantly predicted 

aggression. The beta value indicates that as parenting increases (i.e. as bad 
practices increase), aggression increases also. 

 Sibling aggression (b = 0.08, β = 0.08, t = 2.11, p < .05) significantly predicted 
aggression. The beta value indicates that as sibling aggression increases, aggression 
increases also. 

 Computer games (b = 0.14, β = 0.15, t = 3.85, p < .001) significantly predicted 
aggression. The beta value indicates that as the time spent playing computer games 
increases, aggression increases also. 

 E-numbers (b = –.11, β = –0.12, t = –2.86, p < .01) significantly predicted aggression. 
The beta value indicates that as the diet improved, aggression decreased. 

The only factor not to predict aggression was: 
 Television (b if entered = .03, t = 0.72, p > .05) did not significantly predict 

aggression. 

Based on the standardized beta values, the most substantive predictor of aggression was 
actually parenting style, followed by computer games, diet and then sibling aggression. 

R2 is the squared correlation between the observed values of aggression and the values of 
aggression predicted by the model. The values in this output tell us that sibling aggression 
and parenting style in combination explain 5.3% of the variance in aggression. When 
computer game use and diet are factored in as well, 8.3% of the variance in aggression is 
explained (an additional 1.2%).  

The Durbin–Watson statistic tests the assumption of ‘independence of errors’, which means 
that, for any two observations (cases) in the regression, their residuals should be 
uncorrelated (or independent). In this output the Durbin–Watson statistic falls within the 
recommended boundaries of 1–3, which suggests that errors are reasonably independent. 

The scatterplot helps us to assess both homoscedasticity and independence of errors. The 
scatterplot does show a random pattern and so indicates no violation of the independence of 
errors assumption. Also, the errors on the scatterplot do not funnel out, indicating 
homoscedasticity of errors, thus no violations of these assumptions. 
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